Abstract

Using the full-potential local orbital minimum-basis method, the Ti2-based full-Heusler alloys are studied. The results show that these compounds exhibit a half-metallic behavior, however, in contrast to the conventional full-Heusler alloys, the full-Heusler alloys show a Slater–Pauling rule Mt = Zt − 18 between the total spin magnetic moment (Mt) and valence electron concentration (Zt) per unit cell. Low formation enthalpy implies these Heusler alloys can be fabricated experimentally. The origin of the gap in these half-metallic alloys are well understood. It is found that the half-metallic properties of Ti2-based compounds are insensitive to the lattice distortion and a fully spin polarization can be obtained within a wide range of lattice parameters. This is favorable in practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.