Abstract

Intercalation has attracted considerable attention due to its extensive ability to modify the electronic, optical, and magnetic properties of two-dimensional (2D) layered nanomaterials. Typically, dispersed atoms or molecules are inserted into the van der Waals gap of the 2D materials. Recently, Guo et al. experimentally reported the novel VS2–VS superlattice, where the intercalation takes the form of atomic chain arrays. In this study, we employed the first-principles calculations based on density functional theory to investigate a series of analogous 2D MX2–MX–MX2 nanomaterials, which, consisting of 2D transition metal dichalcogenide bilayers, intercalated with a one-dimensional transition metal chalcogenide MX chain array, forming a hotdog-like structure. Some of the 2D MX2–MX–MX2 are thermally and dynamically stable, suggesting their potential for experimental fabrication similar to VS2–VS–VS2. MnS2–MnS–MnS2 and MnSe2–MnSe–MnSe2 have been found to exhibit ferromagnetic half-metallic properties. In addition, VSe2–VSe–VSe2, CrS2–CrS–CrS2, and CrSe2–CrSe–CrSe2 have been found to be thermally and dynamically stable. Under appropriate external stress, doping, or bias, they could become ferromagnetic half-metals, revealing their potential for spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call