Abstract

Reactive oxygen species lead to oxidative damage of the nucleobase and sugar components of nucleotides in double-stranded DNA. The 2-deoxyribonolactone (or oxidized abasic site) lesion results from oxidation of the C-1' position of DNA nucleotides and has been implicated in DNA strand scission, mutagenesis, and covalent cross-linking to DNA binding proteins. We previously described a strategy for the synthesis of DNA-containing deoxyribonolactone lesions. We now report an improved method for the site specific photochemical generation of deoxyribonolactone sites within DNA oligonucleotides and utilize these synthetic oligonucleotides to characterize the products and rates of DNA strand scission at the lactone lesion under simulated physiological conditions. A C-1' nitroveratryl cyanohydrin phosphoramidite analogue was synthesized and used for the preparation of DNA containing a photochemically "caged" lactone precursor. Irradiation at 350 nm quantitatively converted the caged analogue into the deoxyribonolactone lesion. The methodology was validated by RP-HPLC and MALDI-TOF mass spectrometry. Incubation of deoxyribonolactone-containing DNA under simulated physiological conditions gave rise to DNA fragmentation by two consecutive elimination reactions. The DNA-containing products resulting from DNA cleavage at the deoxyribonolactone site were isolated by PAGE and unambiguously characterized by MALDI-TOF MS and chemical fingerprinting assays. The rate of DNA strand scission at the deoxyribonolactone site was measured in single- and double-stranded DNA under simulated physiological conditions: DNA cleavage occurred with a half-life of approximately 20 h in single-stranded DNA and 32-54 h in duplex DNA, dependent on the identity of the deoxynucleotide paired opposite the lesion site. The initial alpha,beta-elimination reaction was shown to be the rate-determining step for the formation of methylene furanone and phosphorylated DNA products. These investigations demonstrated that the deoxyribonolactone site represents a labile lesion under simulated physiological conditions and forms the basis for further studies of the biological effects of this oxidative DNA damage lesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.