Abstract

Half-chromatid mutations occur when a single base change in a gamete is transmitted to the zygote, which, after DNA replication and cleavage, will result in a mosaic individual. These mutations will be passed on through the germ plasm and also may be expressed somatically. Half-chromatid mutation has been suggested to account for the observed lower frequency of males than expected for lethal X-linked recessive disorders in humans, such as Lesch-Nyhan syndrome, incontinentia pigmenti, and Duchene muscular dystrophy. Although attention has been paid to half-chromatid mutation in humans, it otherwise has been ignored. Here I show that half-chromatid mutation in haplodiploid organisms, such as Hymenoptera, has some interesting and important consequences: (i) since all genes follow the X-linked pattern of inheritance, half-chromatid mutations should be relatively easier to detect; (ii) recessive mutations of all viabilities may be expected; (iii) mosaics of both sexes are expected in haplodiploids with half-chromatid mutation; (iv) gynandromorphs could result from half-chromatid mutation at the sex-determination locus, in species with single-locus complementary sex-determination. Finally, half-chromatid mutation can account for the rare fertile male tortoiseshell phenotype observed in the domestic cat, Felis catus, and which still has not been fully accounted for by other mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.