Abstract

A novel 3D hierarchical MoS2/graphene (MoS2/GN) composite is designed by a facile one-step hydrothermal co-assembling method without using any templates. SEM and TEM images show that the MoS2/GN flower-like particles are self-assembled by MoS2 nanoflakes and graphene nanosheets. According to the hydrothermal method used and characterization results observed, the formation process is proposed. Electrochemical performances of the MoS2/GN composite as anode active material in Lithium-ion batteries (LIBs) is investigated in both MoS2/GN//Li half-cells and MoS2/GN//LiCoO2 full-cells. The MoS2/GN composite delivers high initial discharge capacities of 1240 mAh g−1 and good capacity retentions (about 80%) after more than 80 cycles in half-cells. Furthermore, the assembled MoS2/GN//LiCoO2 full-cell delivers high initial discharge capacities of 1203 mAh g−1. The excellent lithium storage performances of the obtained MoS2/GN composite can be mainly attributed to the designed novel structure of the composite. The cross-linked graphene nanosheets, the anchoring MoS2 nanoflakes and the synergistic effects between them make the composite good conductivity, enough buffering space for the volume change, and shortened ionic transport length. This work clearly demonstrates that the MoS2/GN composite is a promising alternative material for anode in the LIB applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.