Abstract

Half-bridge silicon strain gauges are widely used in the fabrication of diaphragm-type high-pressure sensors, but in some applications, they suffer from low output sensitivity because of mounting position constraints. Through a special design and fabrication approach, a new half-bridge silicon strain gauge comprising one arc gauge responding to tangential strain and another linear gauge measuring radial strain was developed using Silicon-on-Glass (SiOG) substrate technology. The tangential gauge consists of grid patterns, such as the reciprocating arc of silicon piezoresistors on a thin glass substrate. When two half-bridges are connected to form a full bridge with arc-shaped gauges that respond to tangential strain, they have the advantage of providing much higher output sensitivity than a conventional half-bridge. Pressure sensors tested under pressure ranging from 0 to 50 bar at five different temperatures indicate a linear output with a typical sensitivity of approximately 16 mV/V/bar, a maximum zero shift of 0.05% FS, and a span shift of 0.03% FS. The higher output level of pressure sensing gauges will provide greater signal strength, thus maintaining a better signal-to-noise ratio than conventional pressure sensors. The offset and span shift curves are quite linear across the operating temperature range, giving the end user the advantage of using very simple algorithms for temperature compensation of offset and span shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.