Abstract

We construct new half-BPS cosmic string solutions in D=4 N=2 supergravity compatible with a consistent truncation to N=1 supergravity where they describe D-term cosmic strings. The constant Fayet-Iliopoulos term in the N=1 D-term is not put in by hand but is geometrically engineered by a gauging in the mother N=2 supergravity theory. The coupling of the N=2 vector multiplets is characterized by a cubic prepotential admitting an axion-dilaton field, a common property of many compactifications of string theory. The axion-dilaton field survives the truncation to N=1 supergravity. On the string configuration the BPS equations constrain the dilaton to be an arbitrary constant. All the cosmic string solutions with different values of the dilaton have the same energy per unit length but different lenght scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call