Abstract

Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.

Highlights

  • Membranes composed of lipid bilayers with embedded proteins are essential for all cellular life forms

  • Lipids have been considered to be a rare feature among bacterial viruses, existing

  • We will give an overall view of this fascinating group of bacterial viruses with an emphasis on the new results and theories

Read more

Summary

Introduction

Membranes composed of lipid bilayers with embedded proteins are essential for all cellular life forms. Additional membrane-containing phages have been isolated throughout the world from various sources, including rotting plants, seawater, freshwater and sewage ecosystems They infect a wide range of bacterial strains of medical, economic and environmental importance (e.g., Escherichia coli, Pseudomonas syringae, Salmonella typhimurium and Bacillus anthracis). Flavobacterium phage FLiP represents another novel virus type that does not fit to any current taxa; the icosahedral protein capsid surrounding the internal membrane is uniquely combined in FLiP virions with a single-stranded (ss) DNA genome [9] This discovery together with Salisaeta icosahedral phage 1 (SSIP-1), a membrane-containing phage with a genome sequence that hardly shares any similarity with those in the GenBank [10], demonstrates that membrane-containing phages are even more diverse than previously appreciated, and elucidates the importance of the isolation and characterization of new phages to gain a deeper understanding of the microbial diversity in various environmental niches.

PhageGluconobacter
Phage and Their Identification
Significance of Membranes in Phage Life Cycle
Ecology and Evolution of Membrane-Containing Phages
Applications of Membrane-Containing Phages
Findings
Concluding Remarks

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.