Abstract
Monthly cosmic-ray data from Inuvik (0.16 GV) and Climax (2.96 GV) Neutron Monitor stations has been studied with the aid of solar activity parameters for the time period 1947–1995. Systematic differences in the overall shape of successive 11-year modulation cycles and similarities in the alternate 11-year cycles seem to be related to the polarity reversals of the polar magnetic field of the Sun. This suggests a possible effectiveness of the Hale cycle during even and odd solar activity cycles. Our results can be understood in terms of open and closed models of the heliosphere. Positive north pole of the Sun leads to open heliosphere where particles reach the Earth more easily when their access route is by the heliospheric oolar regions (even cycles) than when they gain access along the current sheet (odd cycles). In this case as the route of access becomes longer due to the waviness of the neutral sheet, the hysteresis effect of cosmic-rays is also longer. This interpretation is explained in terms of different contributions of convection, diffusion and drift mechanisms to the whole modulation process influencing cosmic-ray transport in the heliosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.