Abstract
BackgroundTea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. In plants, HAK/KUP/KT family members play a crucial role in K+ acquisition and translocation, growth and development, and response to stresses. Nevertheless, the biological functions of these genes in tea plant are still in mystery, especially their roles in K+ uptake and stress responses.ResultsIn this study, a total of 21 non-redundant HAK/KUP/KT genes (designated as CsHAKs) were identified in tea plant. Phylogenetic and structural analysis classified the CsHAKs into four clusters (I, II, III, IV), containing 4, 8, 4 and 5 genes, respectively. Three major categories of cis-acting elements were found in the promoter regions of CsHAKs. Tissue-specific expression analysis indicated extremely low expression levels in various tissues of cluster I CsHAKs with the exception of a high root expression of CsHAK4 and CsHAK5, a constitutive expression of clusters II and III CsHAKs, and a moderate cluster IV CsHAKs expression. Remarkably, the transcript levels of CsHAKs in roots were significantly induced or suppressed after exposure to K+ deficiency, salt and drought stresses, and phytohormones treatments. Also notably, CsHAK7 was highly expressed in all tissues and was further induced under various stress conditions. Therefore, functional characterization of CsHAK7 was performed, and the results demostrated that CsHAK7 locates on plasma membrane and plays a key role in K+ transport in yeast. Taken together, the results provide promising candidate CsHAKs for further functional studies and contribute to the molecular breeding for new tea plants varieties with highly efficient utilization of K+.ConclusionThis study demonstrated the first genome-wide analysis of CsHAK family genes of tea plant and provides a foundation for understanding the classification and functions of the CsHAKs in tea plants.
Highlights
Tea plant is one of the most important non-alcoholic beverage crops worldwide
Identification and sequence analysis of CsHAKs in the tea plant To identify the complete set of CsHAK family members in the tea plant genome, the sequences of 13 Arabidopsis and 27 rice HAK/KUP/KT proteins were used as queries to screen the local tea plant genome database
Based on the phylogenetic and structural features analysis, all 21 CsHAKs were classified into four clusters (I-IV). cis-acting elements related to plant growth and development, stresses and plant hormone were found in the CsHAKs promoter regions
Summary
Tea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. Organic and inorganic components in young shoots determine the quality of the tea drink Among these substances, catechins, theanine, and caffeine are the most important characteristic secondary metabolites in tea bud and leaf, which endow the tea with a rich taste and many health benefits [1,2,3]. The composition of the tea bud and young leaf is greatly influenced by many factors, such as the tea plant cultivar, nutrition status and environmental factors [4,5,6,7] Out of these factors, mineral nutrition, especially nutrition of potassium, considerably affects the growth and development of tea plants [8]. Exogenous K+ application or maintaining K+ accumulation in mesophyll cells appeared to mitigate remarkably the tea plant drought stress [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.