Abstract
This paper advances video analytics with a focus on crowd analysis for Hajj and Umrah pilgrimages. In recent years, there has been an increased interest in the advancement of video analytics and visible surveillance to improve the safety and security of pilgrims during their stay in Makkah. It is mainly because Hajj is an entirely special event that involve hundreds of thousands of people being clustered in a small area. This paper proposed a convolutional neural network (CNN) system for performing multitude analysis, in particular for crowd counting. In addition, it also proposes a new algorithm for applications in Hajj and Umrah. We create a new dataset based on the Hajj pilgrimage scenario in order to address this challenge. The proposed algorithm outperforms the state-of-the-art approach with a significant reduction of the mean absolute error (MAE) result: 240.0 (177.5 improvement) and the mean square error (MSE) result: 260.5 (280.1 improvement) when used with the latest dataset (HAJJ-Crowd dataset). We present density map and prediction of traditional approach in our novel HAJJ-crowd dataset for the purpose of evaluation with our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.