Abstract

In the last few decades, the efforts of the scientific community to search earthquake signatures in the atmospheric, ionospheric and magnetospheric media have grown rapidly. The increasing amount of good quality data from both ground stations and satellites has allowed for the detections of anomalies with high statistical significance such as ionospheric plasma density perturbations and/or atmospheric temperature and pressure changes. However, the identification of a causal link between the observed anomalies and their possible seismic trigger has so far been prevented by difficulties in the identification of confounders (such as solar and atmospheric activity) and the lack of a global analytical lithospheric–atmospheric–magnetospheric model able to explain (and possibly forecast) any anomalous signal. In order to overcome these problems, we have performed a multi-instrument analysis of a low-latitude seismic event by using high-quality data from both ground bases and satellites and preserving their statistical significance. An earthquake (Mw = 7.2) occurred in the Caribbean region on 14 August 2021 under both solar quiet and fair weather conditions, thus proving an optimal case study to reconstruct the link between the lithosphere, atmosphere, ionosphere, and magnetosphere. The good match between the observations and novel magnetospheric–ionospheric–lithospheric coupling (M.I.L.C.) modeling of the event confirmed that the fault break generated an atmospheric gravity wave that was able to mechanically perturb the ionospheric plasma density, in turn triggering a variation in the magnetospheric field line resonance frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call