Abstract

In comparison with the production of transgenic plants, the generation of hairy roots has the advantage that more independent transgenic lines can be produced in a shorter period of time. Therefore, we wanted to combine this approach with the promoter-trapping strategy to identify nematode-induced plant promoters. For the efficient production and culture of transgenic hairy root lines of Arabidopsis thaliana, the standard Agrobacterium rhizogenes transformation procedure was modified to avoid rapid callusing of the hairy roots. An average of 0.72 independent kanamycin-resistant (KmR) roots were obtained per leaf piece. However, a much lower frequency of reporter gene activation was obtained than expected from experiments with the same vectors in Agrobacterium tumefaciens: of more than 700 independent KmR hairy roots tested, only 8 were β-glucuronidase (GUS) positive. DNA hybridization was done on ten hairy root lines, of which one had a single truncated T-DNA and the others multiple copies of T-DNA that led to complex hybridization patterns. In a parallel analysis of A. thaliana plants transformed with the same vectors using A. tumefaciens, relatively simple T-DNA integration patterns were obtained. The low occurrence of GUS-positive hairy root lines in our experiments could be explained by the multiple T-DNA copies, especially in inverted array, that result in high frequencies of gene inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.