Abstract

BackgroundThrough evolution, some plants have developed natural resistance to insects by having hairs (trichomes) on leaves and other tissues. The hairy trait has been neglected in Brassica breeding programs, which mainly focus on disease resistance, yield, and overall crop productivity. In Arabidopsis, a network of three classes of proteins consisting of TTG1 (a WD40 repeat protein), GL3 (a bHLH factor) and GL1 (a MYB transcription factor), activates trichome initiation and patterning. Introduction of a trichome regulatory gene AtGL3 from Arabidopsis into semi-glabrous Brassica napus resulted in hairy canola plants which showed tolerance to flea beetles and diamondback moths; however plant growth was negatively affected. In addition, the role of BnTTG1 transcription in the new germplasm was not understood.ResultsHere, we show that two ultra-hairy lines (K-5-8 and K-6-3) with BnTTG1 knock-down in the hairy AtGL3+ B. napus background showed stable enhancement of trichome coverage, density, and length and restored wild type growth similar to growth of the semi-glabrous Westar plant. In contrast, over-expression of BnTTG1 in the hairy AtGL3+ B. napus background gave consistently glabrous plants of very low fertility and poor stability, with only one glabrous plant (O-3-7) surviving to the T3 generation. Q-PCR trichome gene expression data in leaf samples combining several leaf stages for these lines suggested that BnGL2 controlled B. napus trichome length and out-growth and that strong BnTTG1 transcription together with strong GL3 expression inhibited this process. Weak expression of BnTRY in both glabrous and trichome-bearing leaves of B. napus in the latter Q-PCR experiment suggested that TRY may have functions other than as an inhibitor of trichome initiation in the Brassicas. A role for BnTTG1 in the lateral inhibition of trichome formation in neighbouring cells was also proposed for B. napus. RNA sequencing of first leaves identified a much larger array of genes with altered expression patterns in the K-5-8 line compared to the hairy AtGL3+B. napus background (relative to the Westar control plant). These genes particularly included transcription factors, protein degradation and modification genes, but also included pathways that coded for anthocyanins, flavonols, terpenes, glucosinolates, alkaloids, shikimates, cell wall biosynthesis, and hormones. A 2nd Q-PCR experiment was conducted on redox, cell wall carbohydrate, lignin, and trichome genes using young first leaves, including T4 O-3-7-5 plants that had partially reverted to yield two linked growth and trichome phenotypes. Most of the trichome genes tested showed to be consistant with leaf trichome phenotypes and with RNA sequencing data in three of the lines. Two redox genes showed highest overall expression in K-5-8 leaves and lowest in O-3-7-5 leaves, while one redox gene and three cell wall genes were consistently higher in the two less robust lines compared with the two robust lines.ConclusionThe data support the strong impact of BnTTG1 knockdown (in the presence of strong AtGL3 expression) at restoring growth, enhancing trichome coverage and length, and enhancing expression and diversity of growth, metabolic, and anti-oxidant genes important for stress tolerance and plant health in B. napus. Our data also suggests that the combination of strong (up-regulated) BnTTG1 expression in concert with strong AtGL3 expression is unstable and lethal to the plant.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0680-5) contains supplementary material, which is available to authorized users.

Highlights

  • Introduction of the OTESTA GLABRA1 (TTG1) construct into glabrous B. napus cv Westar resulted in 12 confirmed transformants out of 500 explants, while transformants with K-TTG1 (RNAi knock-down) resulted in seven confirmed transformants (Additional file 1: Figure S2, Table 1), This represented a 40-65 % “leakage” in the Westar background using 5 mg/L L-phosphinotricin for selection

  • Here, we show that two ultra-hairy lines (K-5-8 and K-6-3) with BnTTG1 knock-down in the hairy AtGL3+ B. napus background showed stable enhancement of trichome coverage, density, and length and restored wild type growth similar to growth of the semi-glabrous Westar plant

  • ribonucleic acid (RNA) sequencing of first leaves identified a much larger array of genes with altered expression patterns in the K-5-8 line compared to the hairy AtGL3+ B. napus background

Read more

Summary

Introduction

Introduction of the OTTG1 (over-expression) construct into glabrous B. napus cv Westar resulted in 12 confirmed transformants out of 500 explants, while transformants with K-TTG1 (RNAi knock-down) resulted in seven confirmed transformants (Additional file 1: Figure S2, Table 1), This represented a 40-65 % “leakage” (false positive) in the Westar background using 5 mg/L L-phosphinotricin for selection. Of three T0 positive K-TTG1 transformants in the B. napus Westar background, only two lines (K-4 and K-16) had single transgene loci, while five independent single O-TTG1 insertions in the Westar background were identified (Additional file 1: Figure S3B,C; Table 1). Two lines K-58 and O-3-7 to be advanced out of the AtGL3+B. napus transformants were confirmed in subsequent Southern blot experiments to harbor a single insertion locus for AtGL3 (Additional file 1: Figure S3D). Six of seven positive K-TTG1 transformants in Westar showed reduced transcript levels for BnTTG1 relative to Westar (Additional file 1: Figure S4A). Relative expression of BnTTG1 was measured in 11 positive O-TTG1 T0 transformants in Westar (Additional file 1: Figure S4C). Many differences exist between these two long-diverged genera, one being that the Brassicas have unbranched trichomes (Taheri and Nayidu, unpublished) whereas Arabidopsis trichomes are mostly tri-branched [7, 8].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.