Abstract
If a semiflexible polymer confined to a narrow channel bends around by 180°, the polymer is said to exhibit a hairpin. The equilibrium extension statistics of the confined polymer are well understood when hairpins are vanishingly rare or when they are plentiful. Here, we analyze the extension statistics in the intermediate situation via experiments with DNA coated by the protein RecA, which enhances the stiffness of the DNA molecule by approximately one order of magnitude. We find that the extension distribution is highly non-Gaussian, in good agreement with Monte-Carlo simulations of confined discrete wormlike chains. We develop a simple model that qualitatively explains the form of the extension distribution. The model shows that the tail of the distribution at short extensions is determined by conformations with one hairpin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.