Abstract

Nowadays, electrification in the transportation sector is one of the most viable solutions to reduce CO2 emissions and meet fuel economy requirements. Being the electrical machine one of the most important players in this electrification trend, extensive research is currently being dedicated to the improvement of their efficiency and power density. In automotive applications, hairpin technologies are widely spreading due to their potential in reducing costs and life cycles in a mass production perspective, as well as in increasing the torque capabilities of machines. However, several challenges need to be addressed before the complete replacement of random windings with hairpins can take place. Of these challenges, the loss produced during high frequency operations is one of the most limiting. This paper aims at studying and investigating high frequency (AC) losses for different slot geometries and conductor cross sections, which in turn involve the analysis of different slots-per-pole-per-phase / layers-per-slot combinations. In addition, the effects on the AC losses of reducing the slot fill factor are studied, either by removing the closest conductors to the slot opening or by reducing the hairpin legs’ height. Analytical and numerical models are employed to investigate these concepts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call