Abstract
We here report the design, synthesis, and biological activity of a kinked hairpin-loop DNA acting at low nM concentrations as a strong inhibitor of HMGB1 (High-Mobility Group Box-1), a nuclear protein with cytokine activity in a number of inflammatory diseases. Lead compound optimization has been realized by inserting different oligo-ethylene glycol spacers at the 5′-end and loop positions of the natural hairpin DNA, in order to improve its enzymatic stability and structuring capability, as well as its overall pharmacokinetic properties. Thermal stability data as well as activity assays proved that the ODN which contained two hexa-ethylene glycol spacers, one at the 5′-end and the other in the loop, was the best candidate to inhibit HMGB1. Plasma stability assays and hydrodynamic volume measurements afforded further encouraging results in view of future in vivo evaluation of the optimized ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.