Abstract
It remains technically challenging to develop a sensitive assay system to isothermally amplify the signal for miRNA detection because of its low abundance in tested sample, sequence similarities and existence in complex biological environments. In this study, using miRNA-21 as target model, a hairpin-inserted cross-shaped DNA nanoprobe (CP) with four functional arms is constructed for the ultrasensitive detection of miRNA via one-step built-in target analogue (BTA) cycle-mediated signal amplification. BTA is pre-locked in one arm of CP probe and inactive. In the presence of target miRNA, BTA can be unlocked and initiate an isothermal amplification process. Utilizing as-designed CP probe, miRNA-21 can be detected to down to 500 fM, and the linear response range spans over five orders of magnitude. The nonspecific signal is less than 1% upon nontarget miRNAs. CP probe exhibits ∼six times enhancement in resistance to nuclease degradation and no obvious degradation-induced fluorescence change is detected during the assay period. The recovery yield ranges from 98.2~105.5% in FBS solution. Because of the high sensitivity, desirable specificity, strong anti-interference ability and substantial increase in nuclease resistance, CP probe is a promising tool for the detection of miRNAs in a complex biological milieu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.