Abstract

Rising consumer concerns with synthetic drugs to treat non-communicable diseases (NCDs) have promoted a shift towards using natural biological active constituents that offer similar health benefits. Hairless canary seed (Phalaris canariensis L) is an emerging crop traditionally used in Mexico to treat NCDs. Peptides liberated during simulated digestion of canary seed protein are believed to be responsible for their biological activity; however, no studies have shown the effect of controlled protein hydrolysis using commercial proteases on canary seed protein’s biological activity. Therefore, this study aimed to explore the in vitro antihypertensive, antidiabetic, and anti-obesity activity of canary seed peptides derived from proteolysis with Alcalase®. Protein fractions were primarily composed of prolamins (54.07 ± 1.8%), glutelins (32.19 ± 3.18%), globulins (5.97 ± 0.52%) and albumins (5.97 ± 0.52%). The < 3 kDa and 3–10 kDa peptide fractions showed the highest inhibition capacity (p < 0.05) towards angiotensin-converting enzyme (IC50= 0.028–0.032 mg/mL) lipase (IC50= 2.15–2.27 mg/mL), α-glucosidase (IC50= 0.82–1.15 mg/mL), and dipeptidyl-peptidase-IV (IC50= 1.27–1.60 mg/mL). Additionally, these peptide fractions showed high antioxidant activity against DPPH (134.22–150.66 μmol TE/mg) and ABTS (520.92–813.33 μmol TE/mg). These results provide an insight into the potential development of functional foods using commercial enzymatic hydrolysis of canary seed proteins for treating hypertension, type-2 diabetes, and obesity.

Highlights

  • Chronic diseases have become a major challenge to public health

  • Canary seed is mainly composed of carbohydrates and protein, making the high protein content of canary seed (15.63%) excel from other cereals, including wheat (11.28%), rye (7.13%), barley (7.66%), and oats (8.07%) (Schalk et al 2017; Mason et al 2018)

  • This study determined that using an oil extraction process prior to hydrolyzing canary seeds improved the overall separation of the canary seed components, the protein yield

Read more

Summary

Introduction

Chronic diseases have become a major challenge to public health. It is estimated that 7 out of the 10 leading causes of death in the United States are attributed to these diseases, with approximately 50% of Americans living with at least one chronic illness (CDC, 2020). Genetic traits, and environmental influences have increased the development of chronic diseases such as obesity, hypertension, and type diabetes (Cicero et al 2017; Chatterjee et al 2018). Treating these conditions requires synthetic drugs known to cause temporary or permanent side effects (e.g., fever, chills, cough, sore throat, convulsions or seizures) (Kumar et al 2010). The rising consumer awareness and health concerns towards utilizing synthetic drugs to treat chronic conditions have driven research to focus on natural or food derived constituents that offer similar health benefits and have less adverse side effects (Chen et al 2009; Ishida et al 2011). These natural compounds include phytochemicals, fatty acids, carbohydrates, and bioactive peptides, among

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call