Abstract

Human scalp skin with abundant hair follicles in various stages of the hair growth cycle was histocultured for up to 40days on Gelfoam® at the air/liquid interface. The anagen hair follicles within the histoculture scalp skin produced growing hair shafts. Hair follicles could continue their cycle in histoculture; for example, apparent spontaneous catagen induction was observed both histologically and by the actual regression of the hair follicle. In addition, vellus follicles were shown to be viable at day 40 after initiation of culture. Follicle keratinocytes continued to incorporate [3H]thymidine for up to several weeks after shaft elongation had ceased. Intensive hair growth was observed in the pieces of shaved mouse skin histocultured on Gelfoam®. Isolated human and mouse hair follicles also produced growing hair shafts. By day 63 in histoculture of mouse hair follicles, the number of hair follicle-associated pluripotent (HAP) stem cells increased significantly and the follicles were intact. Gelfoam® histoculture of skin demonstrated that the hair follicle cells are the most sensitive to doxorubicin which prevented hair growth, thereby mimicking chemotherapy-induced alopecia in Gelfoam® histoculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call