Abstract

Relational reasoning is at the heart of video question answering. However, existing approaches suffer from several common limitations: (1) they only focus on either object-level or frame-level relational reasoning, and fail to integrate the both; and (2) they neglect to leverage semantic knowledge for relational reasoning. In this work, we propose a Hierarchical VisuAl-Semantic RelatIonal Reasoning (HAIR) framework to address these limitations. Specifically, we present a novel graph memory mechanism to perform relational reasoning, and further develop two types of graph memory: a) visual graph memory that leverages visual information of video for relational reasoning; b) semantic graph memory that is specifically designed to explicitly leverage semantic knowledge contained in the classes and attributes of video objects, and perform relational reasoning in the semantic space. Taking advantage of both graph memory mechanisms, we build a hierarchical framework to enable visual-semantic relational reasoning from object level to frame level. Experiments on four challenging benchmark datasets show that the proposed framework leads to state-of-the-art performance, with fewer parameters and faster inference speed. Besides, our approach also shows superior performance on other video+language task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.