Abstract
LetK be a locally compact non-archimedean non-trivially valued field. It is proved the theorem: For a Banach space overK containing a dense subspace with the Hahn-Banach extension property one of the following two mutually exclusive conditions holds:E is a non-archimedean Banach space or the space {x∈E:f(x)=0 for allf∈E*} has no non-trivial continuous linear functionals. Two corollaries are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.