Abstract

Haemolysin (VMH) is a virulent factor produced by Vibrio mimicus, a human pathogen that causes diarrhoea. As intestinal epithelial cells are the primary targets of haemolysin, we investigated its effects on ion transport in human colonic epithelial Caco-2 cells. VMH increased the cellular short circuit current (Isc), used to estimated ion fluxes, and 125I efflux of the cells. The VMH-induced increases in Isc and 125I efflux were suppressed by depleting Ca2+ from the medium or by pretreating the cells with BAPTA-AM or by Rp-adenosin 3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS). The Cl- channel inhibitors 4,4'-disothiocyanatostibene-2,2'-disulfonic acid (DIDS), glybenclamide, and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) suppressed the VMH-induced increases in Isc and 125I efflux. Moreover, VMH increased the intracellular concentrations of Ca2+ and cAMP. Thus, VMH stimulates Caco-2 cells to secrete Cl- by activating both Ca2+ -dependent and cAMP-dependent Cl- secretion mechanisms. VMH forms ion-permeable pores in the lipid bilayer that are non-selectively permeable to small ions. However, the ion permeability of these pores was not inhibited by glybenclamide and DIDS, and VMH did not change the cell membrane potential. These observations indicate that the pores formed on the cell membrane by VMH are unlikely to be involved in VMH-induced Cl- secretion. Notably, VMH stimulated fluid accumulation in the iliac loop test that was fully suppressed by a combination of DIDS and glybenclamide. Thus, Ca2+-dependent and cAMP-dependent Cl- secretion may be important therapeutic targets with regard to the diarrhoea that is induced by Vibrio mimicus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call