Abstract

Changes in transferrin-receptor numbers and iron utilisation were monitored during erythropoietin-induced maturation of J2E erythroid cells. Uptake of transferrin and iron doubled 24 h after exposure to erythropoietin, due to a twofold rise in surface transferrin receptors. In addition, a tenfold increase in iron incorporation into haem was observed after erythropoietin stimulation, as iron taken up from transferrin was directed towards haem biosynthesis and away from storage in ferritin. The rise in iron chelation into haem correlated extremely well with haemoglobin synthesis. However, the increase in numbers of transferrin receptors was not essential for haemoglobin synthesis; rather, it was linked with a burst in proliferation stimulated by erythropoietin. We have shown previously that amiloride blocks erythropoietin-enhanced proliferation of J2E cells, but potentiates maturation [Callus, B. A., Tilbrook, P. A., Busfield, S. J. & Klinken, S. P. (1995) Exp. Cell Res. 219, 39-46]. Here we demonstrate that amiloride suppressed the hormone-induced increase in transferrin receptors, whereas the enhanced incorporation of iron into haem was not inhibited. Similarly, when sodium butyrate was used to induce differentiation of J2E cells, proliferation ceased and surface transferrin receptors remained unaltered, while haemoglobin production was accelerated. It was concluded from these experiments that the erythropoietin-stimulated rise in transferrin receptors during the final stages of J2E cell maturation is linked to cell division, and is not essential for haemoglobin synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call