Abstract

BackgroundExperimental active compression-decompression (ACD) CPR is associated with increased haemodynamic outcomes compared to standard mechanical chest compressions. Since no clinically available mechanical chest compression device is capable of ACD-CPR, we modified the LUCAS 2 (Physio-Control, Lund, Sweden) to deliver ACD-CPR, hypothesising it would improve haemodynamic outcomes compared with standard LUCAS CPR on pigs with cardiac arrest.MethodsThe modified LUCAS delivering 5 cm compressions with or without 2 cm active decompression above anatomical chest level was studied in a randomized crossover design on 19 Norwegian domestic pigs. VF was electrically induced and untreated for 2 min. Each pig received ACD-CPR and standard mechanical CPR in three 180-s. phases. We measured aortic, right atrial, coronary perfusion, intracranial and oesophageal pressure, cerebral and carotid blood flow and cardiac output. Two-sided paired samples t-test was used for continuous parametric data and Wilcoxon test for non-parametric data. P < 0.05 was considered significant.ResultsDue to injuries/device failure, the experimental protocol was completed in nine of 19 pigs. Cardiac output (l/min, median, (25, 75-percentiles): 1.5 (1.1, 1.7) vs. 1.1 (0.8, 1.5), p < 0.01), cerebral blood flow (AU, 297 vs. 253, mean difference: 44, 95% CI; 14–74, p = 0.01), and carotid blood flow (l/min, median, (25, 75-percentiles): 97 (70, 106) vs. 83 (57, 94), p < 0.01) were higher during ACD-CPR compared to standard mechanical CPR. Coronary perfusion pressure (CPP) trended towards higher in end decompression phase.ConclusionCardiac output and brain blood flow improved with mechanical ACD-CPR and CPP trended towards higher during end-diastole compared to standard LUCAS CPR.

Highlights

  • Experimental active compression-decompression (ACD) CPR is associated with increased haemodynamic outcomes compared to standard mechanical chest compressions

  • We hypothesized that the commercially available piston-based battery/mains powered mechanical chest compression device LUCAS 2 (PhysioControl/Jolife AB, Lund Sweden) modified to deliver article decompression CPR (ACD-CPR), would improve hemodynamic parameters during cardiac arrest in pigs compared with standard mechanical compressions delivered by LUCAS 2

  • No differences in mean pressures were demonstrated in present study, but aortic pressure was higher during peak compression with ACD-CPR, and Coronary perfusion pressure (CPP) trended to be higher during end decompression with ACD-CPR (Fig. 2)

Read more

Summary

Introduction

Experimental active compression-decompression (ACD) CPR is associated with increased haemodynamic outcomes compared to standard mechanical chest compressions. Since no clinically available mechanical chest compression device is capable of ACD-CPR, we modified the LUCAS 2 (Physio-Control, Lund, Sweden) to deliver ACD-CPR, hypothesising it would improve haemodynamic outcomes compared with standard LUCAS CPR on pigs with cardiac arrest. No commercially available automatic mechanical chest compression device has so far been able to perform ACD-CPR. Such a device would be of both academic and clinical interest since a mechanical device can enable consistent high quality ACD-CPR independent of rescuer fatigue. We hypothesized that the commercially available piston-based battery/mains powered mechanical chest compression device LUCAS 2 (PhysioControl/Jolife AB, Lund Sweden) modified to deliver ACD-CPR, would improve hemodynamic parameters during cardiac arrest in pigs compared with standard mechanical compressions delivered by LUCAS 2

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call