Abstract

BackgroundChronic migraine (CM) can be associated with aberrant long-range connectivity of MRI-derived resting-state networks (RSNs). Here, we investigated how the fractal dimension (FD) of blood oxygenation level dependent (BOLD) activity may be used to estimate the complexity of RSNs, reflecting flexibility and/or efficiency in information processing in CM patients respect to healthy controls (HC).MethodsResting-state MRI data were collected from 20 untreated CM without history of medication overuse and 20 HC. On both groups, we estimated the Higuchi’s FD. On the same subjects, fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from diffusion tensor imaging and correlated with the FD values.ResultsCM showed higher FD values within dorsal attention system (DAS) and the anterior part of default-mode network (DMN), and lower FD values within the posterior DMN compared to HC. Although FA and MD were within the range of normality, both correlated with the FD values of DAS.ConclusionsFD of DAS and DMN may reflect disruption of cognitive control of pain in CM. Since the normal microstructure of the thalamus and its positive connectivity with the cortical networking found in our CM patients reminds similar results obtained assessing the same structures but with the methods of neurophysiology, in episodic migraine during an attack, this may be yet another evidence in supporting CM as a never-ending migraine attack.

Highlights

  • Up to 3 % of migraines evolve from episodic to chronic annually [1]

  • No significant difference emerged between Chronic migraine (CM) and healthy controls (HC) in gender

  • The rm-ANOVA model for fractal dimension (FD) values revealed that the interaction effect GROUPs × independent components (ICs) was significant (Wilks’ λ = 0.434, F12,27 = 2.655, p = 0.010)

Read more

Summary

Introduction

Up to 3 % of migraines evolve from episodic to chronic annually [1]. It is common agreement that sensitization at the third-order thalamic neurons [2] and at the cortical level [3] drives the functional and clinical changes accompanying migraine chronification. One of the aspects of the migraine brain most explored with functional Magnetic Resonance Imaging (fMRI) is functional activity at rest so called resting-state networks (RSNs). It can capture the macroscopic spatial dynamics of the blood oxygenation level dependent (BOLD) signal of the brain, which is the basis to form networks [4]. None of them have investigated yet the integrity of the thalamo-cortical network activity in patients with chronic migraine (CM). We investigated how the fractal dimension (FD) of blood oxygenation level dependent (BOLD) activity may be used to estimate the complexity of RSNs, reflecting flexibility and/or efficiency in information processing in CM patients respect to healthy controls (HC)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call