Abstract

The black-footed tree-rat (Mesembriomys gouldii) and greater stick-nest rat (Leporillus conditor) are near threatened and vulnerable native Australian murids. There is a paucity of health and welfare knowledge for these species and native murids in general. In this paper we aimed to address this deficiency in knowledge by describing some key haematological and blood biochemistry parameters for these species. Haematology and blood biochemistry data were obtained from clinical histories of the two murid species held in captivity at Taronga Zoological Park, Mosman, Australia. The data were analysed to establish confidence intervals for each parameter available and leukocyte morphology described. White blood cell counts were higher in females than males. Both species also had high neutrophil:lymphocyte ratios (tree-rat ratios were almost even). Haematocrit was higher in male stick-nest rats than females. Differential leukocyte counts and leukocyte morphology was consistent with previous descriptions in other murids and between individuals. Blood biochemistry values were unremarkable except for the high level of globulin in stick-nest rats. The values provided in the study will add to the knowledge of health data for murids in captivity and aid captive and natural management of Australian native murids.

Highlights

  • The continuous decline of Australian mammals has occurred since European settlement (Burbidge and McKenzie 1989) and is influenced by a combination of factors

  • This study aimed to establish baseline confidence intervals for haematology, serum biochemistry and leukocyte morphology for these two species living in captivity

  • The past two decades saw a large change in how blood was analysed and what animal healthcare professionals investigated when analysing blood

Read more

Summary

Introduction

The continuous decline of Australian mammals has occurred since European settlement (Burbidge and McKenzie 1989) and is influenced by a combination of factors. The Muridae family, the only family of rodents found in Australia, is not exempt from this decline. They currently account for up to 40 % of all Australian mammalian species (Breed and Ford 2007), with at least 57 currently recognised (Van Dyck and Strahan 2008). Animals with a larger body mass are able to maintain a sufficient population density, decreasing the risk of extinction, leaving the smaller animals, such as murids (in the critical weight range of 25–500 g) (Johnson and Isaac 2009) with a higher rate of extinction risk (Burbidge and McKenzie 1989).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call