Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14(+) monocytes and CD4(+) T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4(+) T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.