Abstract
The integration of cryptographic algorithms like Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) is pivotal in bolstering the core attributes of blockchain technology, especially in achieving decentralization, tamper resistance, and anonymization within the realm of medical applications. Despite their widespread utilization, the conventional AES and ECC face significant hurdles in security and efficiency when dealing with expansive medical data, posing a challenge to the effective preservation of patient privacy. In light of these challenges, this study introduces HAE (hybrid AES and ECC), an innovative hybrid cryptographic algorithm that ingeniously amalgamates the robustness of AES with the agility of ECC. HAE is designed to symmetrically encrypt original data with AES while employing ECC for the asymmetric encryption of the initial AES key. This strategy not only alleviates the complexities associated with AES key management but also enhances the algorithm’s security without compromising its efficiency. We provide an in-depth exposition of HAE’s deployment within a framework tailored for medical scenarios, offering empirical insights into its enhanced performance metrics. Our experimental outcomes underscore HAE’s exemplary security, time efficiency, and optimized resource consumption, affirming its potential as a breakthrough advancement for augmenting blockchain applications in the medical sector, heralding a new era of enhanced data security and privacy within this critical domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.