Abstract

Holographic principles have impacted the way we look at strong coupling phenomena in quantum chromodynamics, strongly interacting extensions of the standard model, and {condensed-matter} physics. In real world settings, however, we still lack understanding of why and when such an approach is justified. Therefore, here, without invoking any such principle a priori, we demonstrate how such a picture arises in the worldline formulation of quantum field theory. Among other connections to holographic models, a warped AdS5 geometry, a quantum mechanical picture, and hidden local symmetry emerge, as well as a Wilson flow (gradient flow), which extends the four-dimensional sources to five-dimensional fields and a link to the Gutzwiller trace formula. The worldline formulation also reproduces the non-relativistic case, which is important for condensed-matter physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call