Abstract

The shift of atomic energy levels due to hadronic vacuum polarization is evaluated in a semiempirical way for hydrogenlike ions and for muonic hydrogen. A parametric hadronic polarization function obtained from experimental cross sections of $e^-e^+$ annihilation into hadrons is applied to derive an effective relativistic Uehling potential. The energy corrections originating from hadronic vacuum polarization are calculated for low-lying levels using analytical Dirac-Coulomb wave functions, as well as bound wave functions accounting for the finite nuclear size. Closed formulas for the hadronic Uehling potential of an extended nucleus as well as for the relativistic energy shift in case of a point-like nucleus are derived. These results are compared to existing analytic formulas from non-relativistic theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call