Abstract

Recently, we have proposed that the interaction between relativistic protons resulting from Fermi first order acceleration in the superbubble of a stellar OB association or in other nearby accelerator and ions residing in single stellar winds of massive stars could lead to TeV sources without strong counterparts at lower energies. Here we refine this analysis in several directions. We study collective wind configurations produced by a number of massive stars, and obtain densities and expansion velocities of the stellar wind gas that is to be target of hadronic interactions. We study the expected $\gamma$-ray emission from these regions, considering in an approximate way the effect of cosmic ray modulation. We compute secondary particle production (electrons from knock-on interactions and electrons and positrons from charged pion decay), and solve the loss equation with ionization, synchrotron, bremsstrahlung, inverse Compton, and expansion losses. We provide examples where configurations can produce sources for GLAST satellite, and the MAGIC/HESS/VERITAS telescopes in non-uniform ways, i.e., with or without the corresponding counterparts. We show that in all cases we studied no EGRET source is expected. Finally, we comment on HESS J1303-631 and on Cygnus OB 2 and Westerlund 1 as two associations where this scenario could be tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.