Abstract

The form of the kernel that controls the dynamics of the Bethe-Salpeter equations is essential for obtaining quantitatively accurate predictions for the observable properties of hadrons. In the present work we briefly review the basic physical concepts and field-theoretic techniques employed in a first-principle derivation of a universal (process-independent) component of this kernel. This "top-down" approach combines nonperturbative ingredients obtained from lattice simulations and Dyson-Schwinger equations, and furnishes a renormalization-group invariant quark-gluon interaction strength, which is in excellent agreement with the corresponding quantity obtained from a systematic "bottom-up" treatment, where bound-state data are fitted within a well-defined truncation scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call