Abstract

AbstractIn a future climate, the Hadley cell and associated trade easterlies are projected to expand poleward. This projected change in the atmospheric circulation is expected to impact the ocean through changes in the mean sea surface temperature (SST). We also expect implications for the large‐scale SST variability, because near‐surface wind is directly related to two drivers of the SST, that is, turbulent heat flux and anomalous wind‐driven Ekman heat flux. Previous studies show that in the subtropics, anomalous turbulent and Ekman heat fluxes oppose each other, acting to reduce SST variability, whereas, in the midlatitudes, they reinforce each other and enhance SST variability. Through analysis of reanalysis products and Coupled Model Intercomparison Project simulations, we find that the subtropical regions where the fluxes oppose each other are projected to expand poleward in a future climate, following the poleward expansion of the Hadley cell, with potential implications for the amplitude of subtropical SST variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.