Abstract

Abstract The Hadley cell of a virtually dry snowball Earth atmosphere under equinox insolation is studied in a comprehensive atmospheric general circulation model. In contrast to the Hadley cell of modern Earth, momentum transport by dry convection, which is modeled as vertical diffusion of momentum, is important in the upper branch of the snowball Earth Hadley cell. In the zonal momentum balance, mean meridional advection of mean absolute vorticity is not only balanced by eddies but also by vertical diffusion of zonal momentum. Vertical diffusion also contributes to the meridional momentum balance by decelerating the Hadley cell through downgradient mixing of meridional momentum between its upper and lower branches. When vertical diffusion of momentum is suppressed in the upper branch, the Hadley cell strengthens by a factor of about 2. This is in line with the effect of vertical diffusion in the meridional momentum balance but in contrast with its effect in the zonal momentum balance. Neither axisymmetric Hadley cell theories based on angular momentum conservation nor eddy-permitting Hadley cell theories that neglect vertical diffusion of momentum are applicable to the snowball Earth Hadley cell. Because the snowball Earth Hadley cell is a particular realization of a dry Hadley cell, these results show that an appropriate description of dry Hadley cells should take into account vertical transport of momentum by dry convection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.