Abstract

With a 511-slit one-dimensional (1D) Hadamard mask and a highly sensitive linear charge-coupled device (CCD), spatial multiplexing is performed and a programmable Hadamard transform (HT) microscopic fluorescence imaging system was developed. The system can generate 511×512 pixel format images for small samples. Sensitivity, signal to noise ratio, imaging speed and spatial resolution of this system were discussed. The results show that the system can be applied for single-cell imaging sensitively in a short time. Spatial resolution up to 0.24 μm/pixel, which is close to the resolution limit of the conventional optical microscope, has been obtained under oil lens. The weak native fluorescence imaging for pollen cells can be realized within 1 min. The system has been applied for multi-parameter evaluation of tumor malignancy based on nuclear DNA ploidy measurements for one breast tumor specimen. The result indicates that the system has good application prospect in cell biology and medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.