Abstract

Over human leg muscles, three motor responses (MR) can commonly be elicited, namely short-latency reflex (SLR), medium-latency reflex (MLR), and long-latency reflex (LLR). The MLR is less well understood than SLR and LLR. As the response to subsequent stimuli may be used to characterize central influences of an MR, we were interested, whether the MLR differs from SLR and LLR with respect to its habituation and facilitation behavior. MR were examined over the anterior tibial (TA) muscle at different contraction levels after electrical single or train stimuli (time intervals of 3ms) over the ipsilateral sural nerve. Furthermore, MR were selectively averaged after each of four subsequent stimuli (1Hz, 0.4Hz, trains-of-3). After single stimuli, the peak latency values were 46.2±2.3ms, 88.0±5.8ms (MLR), and 131.7±22.2ms (LLR). All three MR gained similarly strong and significantly in amplitude when up to 10kg of weight was loaded compared with no weight load. After train stimuli, the LLR but not SLR and MLR gained significantly in amplitude as compared with single stimuli. Different to SLR and LLR, the MLR showed significant habituation behavior at a stimulus repetition rate of 1Hz but not of 0.4Hz. Thus, inhibitory interneurons seem to be involved in the MLR pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.