Abstract

High-fiber diet interventions have been proven to be beneficial for gut microbiota and glycemic control in diabetes patients. However, the effect of a low level of fiber in habitual diets remains unclear. This study aims to examine the associations of habitual dietary fiber intake with gut microbiome profiles among Chinese diabetes patients and identify differential taxa that mediated associations of dietary fiber with HbA1c level. Two cross-sectional studies and one longitudinal study were designed based on two follow-up surveys in a randomized trial conducted during 2015–2017. The study included 356 and 310 participants in the first and second follow-ups, respectively, with 293 participants in common in both surveys. Dietary fiber intake was calculated based on a 3-day 24-h diet recall at each survey and was classified into a lower or a higher group according to the levels taken based on the two surveys using 7.2 g/day as a cut-off value. HbA1c was assayed to assess glycemic status using a cut-off point of 7.0% and 8.0%. Microbiome was profiled by 16S rRNA sequencing. A high habitual dietary fiber intake was associated with a decrease in α-diversity in both the cross-sectional and longitudinal analyses. At the first follow–up, phylum Firmicutes and Fusobacteria were negatively associated with a higher dietary fiber intake (p < 0.05, Q < 0.15); at the second follow-up, genus Adlercreutzia, Prevotella, Ruminococcus, and Desulfovibrio were less abundant in patients taking higher dietary fiber (p < 0.05, Q < 0.15); genus Desulfovibrio and Ruminococcaceae (Unknown), two identified differential taxa by HbA1c level, were negatively associated with dietary fiber intake in both the cross-sectional and longitudinal analyses, and mediated the dietary fiber-HbA1c associations among patients taking dietary fiber ≥ 7.2 g/day (mediation effect β [95%CI]: −0.019 [−0.043, −0.003], p = 0.018 and −0.019 [−0.046, −0.003], p = 0.016). Our results suggest that habitual dietary fiber intake has a beneficial effect on gut microbiota in Chinese diabetes patients. Further studies are needed to confirm our results.

Highlights

  • At the first follow–up, phylum Firmicutes and Fusobacteria were negatively associated with a higher dietary fiber intake (p < 0.05, Q < 0.15); at the second follow-up, genus Adlercreutzia, Prevotella, Ruminococcus, and Desulfovibrio were less abundant in patients taking higher dietary fiber (p < 0.05, Q < 0.15); genus Desulfovibrio and Ruminococcaceae (Unknown), two identified differential taxa by hemoglobin A1c (HbA1c) level, were negatively associated with dietary fiber intake in both the cross-sectional and longitudinal analyses, and mediated the dietary fiberHbA1c associations among patients taking dietary fiber ≥ 7.2 g/day

  • Our results suggest that habitual dietary fiber intake has a beneficial effect on gut microbiota in Chinese diabetes patients

  • We explored the potential effect of habitual dietary fiber intake using data collected in a randomized controlled trial (RCT) addressing health literacy and/or exercise interventions in Chinese Type 2 diabetes mellitus (T2DM) patients

Read more

Summary

Introduction

Type 2 diabetes mellitus (T2DM) has imposed a huge burden on health systems in. China due to its high prevalence and rapid upward trend, as well as the epidemic of related complications in diabetes patients [1–3]. Effective interventions are urgently needed to prevent and control the metabolic disorder in the Chinese population. The role of gut microbiota in the development of T2DM and other metabolic disorders has aroused great attention globally [4,5]. It is estimated that there are 10 to 100 trillion microbes in a human being, and each person harbors more than 1000 phylotypes, mostly located in the large intestine and dominated by phylum Firmicutes and Bacteroidetes [6,7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.