Abstract

Bat species show global ecological importance, yet their numbers are declining worldwide. Understanding bat-habitat interactions is crucial in terms of developing effective conservation plans. In an effort to model bat habitat suitability in the Cassadaga Creek watershed, long-term bioacoustic bat data (spanning 2009–2020) was compiled, georeferenced and statistically analyzed using logistic regression techniques. In total, 1600 bat occurrence records from five species of bat (559 Eptesicus fuscus, 560 Lasionycteris noctivagans, 143 Lasiurus borealis, 260 Lasiurus cinereus, and 78 Myotis lucifugus) were paired with pseudo-absence points to study the relationship between bat calling behavior and land cover. All bats but Myotis lucifugus had a statistically significant relationship with forested land cover, and all bats had negative interactions with agricultural habitats. Geospatial data was coupled with the statistical output to create maps of habitat suitability and echolocation calling density. This work provides a model that can be employed worldwide to evaluate bat habitat needs or patterns in echolocation behavior. Future research will incorporate a more recently collected dataset that is of greater geographic diversity with a larger number of environmental variables in the species distribution model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call