Abstract

The accurate habitat suitability evaluation of forest species is vital for forest resource management and conservation. Therefore, the previously published thresholds of soil organic carbon (SOC) contents for the six main forest species were used to screen sample points in this study; the maximum entropy modeling (MaxEnt) was applied to predict the potential distribution of those species in Lvliang Mountain, Shanxi Province, China. The following results were derived: (1) the area under the curve (AUC) value of the MaxEnt model was 0.905, indicating the model results had high accuracy; (2) the main environmental factors affecting the woodlands were mean diurnal temperature range, solar radiation, population density and slope; (3) the model accurately depicted the most suitable areas for those species, namely Populus davidiana Dode (Malpighiales: Salicaceae), Betula platyphylla Sukaczev (Fagales: Betulaceae), Quercus wutaishanica Mayr (Fagales: Fagaceae), Platycladus orientalis (L.) Franco (Pinales: Cupressaceae), Larix gmelinii (Rupr.) Kuzen. (Pinales: Pinaceae) and Pinus tabuliformis Carrière (Pinales: Pinaceae). This study has improved the representativeness of the samples based on prior knowledge to enhance the biological meaning and accuracy of the prediction results. Its findings provide a theoretical basis for the forest resource protection, management measures alongside the reconstruction of low-yield and low-efficiency forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call