Abstract
AbstractPhysical seed dormancy is a common attribute among plants, and a wide range of dormancy-release mechanisms have been described, but their ecological significance is rarely tested through comparative study. This study tests whether dormancy-release responses to wet heat in four legume species with physical dormancy are correlated with habitat: two wetland species (Mimosa pigraandParkinsonia aculeata, both dispersed primarily by water) and two terrestrial species (Acacia niloticaandProsopis pallida, both dispersed primarily through vertebrate herbivores). Dormancy release was compared at three moisture levels (80% relative humidity, saturated and submerged) at constant (20–45°C) and diurnally fluctuating (20/40°C) temperatures for 14 d. Seed viability was tested by germinating at 25°C. The functional relationship between temperature and dormancy release after 14 d differed between species: submerged seeds of the two wetland species showed a quadratic response, with low rates of imbibition below 20–25°C and complete imbibition at around 40°C;P. pallidaseeds showed a linear positive relationship, whereas there was no temperature response forA. niloticaseeds below 45°C. Surprisingly, dormancy release after 14 d was relatively insensitive to moisture levels, although rate of dormancy release was generally slower under drier conditions. Dormancy release was not influenced by fluctuating temperatures. Seed viability was largely unaffected by temperature or moisture regime, although it did differ with species and was lower for non-dormant seeds. Our results suggest that a functional dormancy-release response to wet heat provides important fitness benefits for wetland species, but not for species dispersed through vertebrate herbivores, for which it may be maladaptive.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.