Abstract

1. In a field experiment we examined the interactive effects of two common predators of zooplankton, bluegill sunfish (Lepomis macrochirus) and Chaoborus spp. on the growth rate and habitat use of three congeneric prey species (Daphnia). Bluegill and Chaoborus both consume Daphnia, but bluegill also prey on Chaoborus. The prey species, Daphnia pulicaria, D. rosea and D. retrocurva, differed in body size and vertical distribution. We expected the largest species, D. pulicaria, to be most vulnerable to fish predation and the smallest species, D. retrocurva, to be most vulnerable to Chaoborus predation.2. As we expected, the population growth rate of D. pulicaria was significantly reduced by fish. However, Chaoborus also significantly reduced the growth rate of this species. No significant interaction effect was detected, indicating that the effect of these predators was additive. The growth rates of D. rosea and D. retrocurva were significantly reduced by Chaoborus, but a significant interaction effect indicated that the effect of Chaoborus was stronger in the absence of fish than when fish were present. Therefore the impact of Chaoborus and fish on D. rosea and D. retrocurva was non‐additive. The interactive effect of the two predators on D. retrocurva was greater in magnitude than on D. rosea.3. In the absence of predators, the three Daphnia species showed no differences in mean habitat depth between day and night. Both predators significantly affected diel habitat use of D. pulicaria and D. rosea. Fish caused both of these Daphnia species to move deeper during the day, whereas Chaoborus caused Daphnia to move into shallower water at night. Daphnia retrocurva tended to migrate upwards at night in all predator treatments, but no significant differences in migration were observed among the predator treatments. The effects of predators on habitat use were not interactive for any prey species.4. Our results suggest that body size, habitat use and the diel migratory response to predators are important factors mediating the interactive effects of multiple predator types on zooplankton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.