Abstract

The seabird tick Ixodes uriae is exposed to extreme environmental conditions during the off-host phase of its life cycle on the Antarctic Peninsula. To investigate how this tick resists desiccation, water requirements of each developmental stage were determined. Features of I. uriae water balance include a high percentage body water content, low dehydration tolerance limit, and a high water loss rate, which are characteristics that classify this tick as hydrophilic. Like other ticks, I. uriae relies on water vapor uptake as an unfed larva and enhanced water retention in the adult, while nymphs are intermediate and exploit both strategies. Stages that do not absorb water vapor, eggs, fed larvae and fed nymphs, rely on water conservation. Other noteworthy features include heat sensitivity that promotes water loss in eggs and unfed larvae, an inability to drink free water from droplets, and behavioral regulation of water loss by formation of clusters. We conclude that I. uriae is adapted for life in a moisture-rich environment, and this requirement is met by clustering in moist, hydrating, microhabitats under rocks and debris that contain moisture levels that are higher than the tick's critical equilibrium activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call