Abstract

Measurements of pH drift were used to assess the ability of 38 red algal seaweeds to use bicarbonate and to deplete the dissolved inorganic carbon pool (DIC) from seawater medium. Subtidal algae were typically restricted to the use of DIC in the form of dissolved CO2, reducing the initial DIC by only 9%. Intertidal species used both dissolved CO2 and bicarbonate and reduced initial DIC by as much as 70%. DIC reductions and pH compensation points for the intertidal species tested were strongly correlated with their vertical zonation on the rocky shoreline (analysis of variance). DIC acquisition efficiency increased with tidal height, but species from the upper edge of the intertidal demonstrated a reversal of this trend. This general pattern associated with tidal height was observed not only among intertidal red algae in general, but also among four species of the genus Porphyra (P. torta V. Krishnamurthy, P. papenfussii Krishnamurthy, P. perforata J. Agardh, P. fucicola Krishnamurthy) and among four populations of the broadly distributed species Mastocarpus papillatus (C. Agardh). The Mastocarpus observations suggest either that individuals of this species may be able to express alternate strategies for carbon acquisition or that intertidal height may select for survivorship of genotypes with different carbon acquisition strategies. Taken together, these data suggest that the carbon acquisition strategy of intertidal red algae may be an important physiological set of adaptations that is under active evolutionary selection. These physiological differences were not related to phylogeny, tested as membership in red algal families and orders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call