Abstract
We evaluated how differences between two empirical resistance models for the same geographic area affected predictions of gene flow processes and genetic diversity for the Mexican spotted owl (Strix occidentalis lucida). The two resistance models represented the landscape under low- and high-fragmentation parameters. Under low fragmentation, the landscape had larger but highly concentrated habitat patches, whereas under high fragmentation, the landscape had smaller habitat patches that scattered across a broader area. Overall habitat amount differed little between resistance models. We tested eight scenarios reflecting a factorial design of three factors: resistance model (low vs. high fragmentation), isolation hypothesis (isolation-by-distance, IBD, vs. isolation-by-resistance, IBR), and dispersal limit of species (200 km vs. 300 km). Higher dispersal limit generally had a positive but small influence on genetic diversity. Genetic distance increased with both geographic distance and landscape resistance, but landscape resistance displayed a stronger influence. Connectivity was positively related to genetic diversity under IBR but was less important under IBD. Fragmentation had a strong negative influence on the spatial patterns of genetic diversity and effective population size (Ns). Despite habitats being more concentrated and less widely distributed, the low-fragmentation landscape had greater genetic diversity than the high-fragmentation landscape, suggesting that highly concentrated but larger habitat patches may provide a genetic refuge for the Mexican spotted owl.
Highlights
Human-induced environmental change degrades habitats and drives biodiversity loss and species extinctions across most taxonomic groups [1,2,3]
We evaluated whether relationships of landscape connectivity and genetic diversity differed between the two resistance models by using the connectivity models of Wan et al [48]
Mean habitat patch size was larger in the low-fragmentation model than in the high-fragmentation model (Figure 3)
Summary
Human-induced environmental change degrades habitats and drives biodiversity loss and species extinctions across most taxonomic groups [1,2,3]. Habitat loss and fragmentation increase spatial isolation of populations, reduce population size, and disrupt dispersal behavior and population connectivity [5,6], leading to potential reduction in gene flow and subsequent decline in genetic diversity [7,8,9]. In this context, habitats that provide connectivity and linkages for dispersal and gene flow have high conservation value, especially in fragmented landscapes. In response to growing concerns about habitat loss and fragmentation, the identification and protection of wildlife corridors has
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.