Abstract

The relative importance of stochastic- and niche-based processes shifts during successional time and across different types of habitats. Microbial biofilms are known to undergo such successional shifts. However, little is known about the interaction between these successional trajectories and habitat filters. Harsh habitat filters could affect biofilm successional trajectories by strengthening niche-based processes and weakening stochastic processes. We used mesocosms to track successional trajectories in bacterial communities associated with the striped shore crab (Pachygrapsus transversus). We followed replicated microbial communities under strong and weak habitat filters associated with the crab's gut and carapace. For bacteria, colonization of the crab's gut is constrained by strong chemical and physical filtering, while the carapace remains relatively open for colonization. Consistent with successional models of bacterial biofilms, carapace microbial communities initially converged in community composition at day 8 and diverged thereafter. We expected gut microbial communities to deviate from the trajectory in the carapace and converge towards a subset of tolerant species. Instead, bacterial communities in the gut exhibited low richness, unchanging similarity in composition and turnover in species identities throughout the duration of our study. These habitat filter effects were linked with weak species interactions and low influence from colonization in the gut. If these findings are representative of differences in filter strength in a continuum of successional trajectories, habitat filters may provide basis for predictions that link successional models and habitat types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call