Abstract

Abstract California’s central coast differs from many agricultural areas in the U.S., which feature large tracts of monoculture production fields and relatively simple landscapes. Known as the nations salad bowl, and producing up to 90% of U.S. production of lettuces, broccoli and Brussels sprouts, this region is a mosaic of fresh vegetable fields, coastal meadow, chaparral shrubs, riparian and woodland habitat. We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006. Our key results are that: (1) as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2) parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3) different groups of parasitoids were associated with unique types of natural vegetation, and (4) parasitism rates of sentinel cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality. Although individual species of parasitoids may thrive in landscapes that are predominantly short season crops, the robust associations found in this study across specialist and generalist parasitoids and different taxa (tachinid flies, ichneumon wasps, braconid wasps) shows that recent food safety practices targeting removal of natural vegetation around vegetable fields in an attempt to eliminate wildlife may harm natural enemy communities and reduce ecosystem services. We argue that enhancing biological diversity is a key goal for transforming agroecosystems for future productivity, sustainability and public health.

Highlights

  • Ecosystem services, though vital for the future of U.S agricultural production and profitability (Daily et al, 1997; Losey and Vaughan, 2006), are severely threatened by agricultural intensification (Butler et al, 2007; Power, 2010)

  • We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006

  • Our key results are that: (1) as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2) parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3) different groups of parasitoids were associated with unique types of natural vegetation, and (4) parasitism rates of sentinel ­cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality

Read more

Summary

Introduction

Though vital for the future of U.S agricultural production and profitability (Daily et al, 1997; Losey and Vaughan, 2006), are severely threatened by agricultural intensification (Butler et al, 2007; Power, 2010). Habitat disturbance (soil fumigation, tillage, bare fallow, rapid harvests) disrupts community development (Landis and Menalled, 1998; Letourneau, 1998), forcing beneficial insects into patterns of ‘cyclic colonization’ from refuge habitats (Wissinger, 1997). If these refugia are unavailable within a suitable distance from emerging pest irruptions, the abundance and diversity of beneficial insects is reduced along with the pest control services they provide in crop fields (Barbosa and Benrey, 1998). The conservation, restoration, or establishment of on-farm or surrounding vegetation is a promising area of research and policy development (Ehler, 1998; Thies et al, 2003; Landis et al, 2005; Chaplin-Kramer et al, 2011; Thies et al, 2011)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call