Abstract
I experimentally tested two predictions of the hypothesis that the positive relationship between habitat diversity and species diversity arises from a reduction in the negative effects of interspecific competition. By allowing species to partition habitat and avoid competition, habitat diversity should 1) facilitate the addition of an ecologically intermediate species into an existing community, and 2) reduce the negative effects of that species on existing members of the community. I tested these predictions with juveniles of three sympatric salmonid species: coho salmon (Oncorhynchus kisutch), steelhead trout (O. mykiss), and cutthroat trout (O. clarki), which in natural streams occupy deep low‐velocity pools, shallow high‐velocity riffles, and intermediate habitats, respectively. I introduced two (coho and steelhead) and three species communities into each of three artificial stream habitats: pools, riffles, and diverse. The results provide partial support for the predictions. Cutthroat trout grew fastest in the diverse stream habitat. Though habitat diversity did not eliminate the negative effects of competition, in the three species community coho and steelhead grew as fast in the diverse habitat as in either homogeneous habitat. The results are consistent with data on species number and evenness from natural communities, where variation along other niche axes confounds the relationship between habitat diversity, interspecific competition, and species diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.