Abstract

Lianas are woody plants that require external support to reach the canopy. They are expanding in forests worldwide, possibly due to climate change and forest disturbance. Most studies on lianas have been conducted in tropical forests. Lianas are less explored in subtropical forests. We aimed to document the density and diversity of lianas, to test how habitat condition and the distribution of tree species affect the distributions of lianas based on data from a fully mapped 20 ha plot in subtropical China. We analyzed habitat association by fitting a generalized linear model with family-level liana abundance as response variable and family identity, and its interaction terms with topographic variables (slope, convexity, elevation, and sin(aspect)), as explanatory variables. We focused on the spatial associations of three liana species and 82 tree species with ≥100 individuals using the pair correlation function and redundancy analysis. We found a total of 1305 lianas, falling into 26 species, and 16 families, in the 20 ha plot. They accounted for 1.5% of individuals, 11.7% of species, and 0.4% of total basal area of woody plants in the plot. There were large variations in distributions of liana with respect to the four topographic variables among families, contrasting with former findings suggesting that lianas favor dry and hot habitats. The three most abundant liana species showed non-random associations with tree species, and they tended to positively associate with similar tree species but negatively associate with different tree species. The distribution of tree species explained 21.8% of variance in liana distribution. Our study suggested that both habitat conditions and tree composition intervene in determining liana distributions and that habitat heterogeneity may be a mechanism for liana diversity maintenance. Our study provides a basic understanding of liana diversity and distribution in this subtropical forest and contributes to future planning of liana studies and diversity conservation in subtropical forests under climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call