Abstract

PurposeThis paper aims to deal with two-dimensional magneto-hydrodynamic (MHD) Falkner–Skan boundary layer flow of an incompressible viscous electrically conducting fluid over a permeable wall in the presence of a magnetic field.Design/methodology/approachUsing the Lie group approach, the Lie algebra of infinitesimal generators of equivalence transformations is constructed for the equation under consideration. Using these suitable similarity transformations, the governing partial differential equations are reduced to linear and nonlinear ordinary differential equations (ODEs). Further, Haar wavelet approach is applied to the reduced ODE under the subalgebra 4.1 for constructing numerical solutions of the flow problem.FindingsA new type of solutions was obtained of the MHD Falkner–Skan boundary layer flow problem using the Haar wavelet quasilinearization approach via Lie symmetric analysis.Originality/valueTo find a solution for the MHD Falkner–Skan boundary layer flow problem using the Haar wavelet quasilinearization approach via Lie symmetric analysis is a new approach for fluid problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.